Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-theart power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure−property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.