Two dimensional liquid crystal droplet problem with tangential boundary condition
Zhiyuan Geng,
Fanghua Lin
Abstract:This paper studies a shape optimization problem which reduces to a nonlocal free boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence of an optimal shape that has two cusps on the boundary. We also prove the boundary of the droplet is a chord-arc curve with its normal vector field in the VMO space. In fact, the boundary curves of such droplets belong to the so-called W… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.