Computed tomography (CT) provides excellent bony detail, whereas magnetic resonance (MR) imaging is superior in evaluating the neural structures. The purpose of this prospective study was to assess interobserver and intermethod agreement in the evaluation of cervical vertebral column morphology and lesion severity in Great Danes with cervical spondylomyelopathy by use of noncontrast CT and high-field MR imaging. Fifteen client-owned affected Great Danes were enrolled. All dogs underwent noncontrast CT under sedation and MR imaging under general anesthesia of the cervical vertebral column. Three observers independently evaluated the images to determine the main site of spinal cord compression, direction and cause of the compression, articular process joint characteristics, and presence of foraminal stenosis. Overall intermethod agreement, intermethod agreement for each observer, overall interobserver agreement, and interobserver agreement between pairs of observers were calculated by use of kappa (κ) statistics. The highest overall intermethod agreements were obtained for the main site of compression and direction of compression with substantial agreements (κ = 0.65 and 0.62, respectively), whereas the lowest was obtained for right-sided foraminal stenosis (κ = 0.39, fair agreement). For both imaging techniques, the highest and lowest interobserver agreements were recorded for the main site of compression and degree of articular joint proliferation, respectively. While different observers frequently agree on the main site of compression using both imaging techniques, there is considerable variation between modalities and among observers when assessing articular process characteristics and foraminal stenosis. Caution should be exerted when comparing image interpretations from multiple observers.