We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe 2 ) obtained via the "graphene-like" mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E 2g peak of TaSe 2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A 1g and E 2g , are -0.013 and -0.0097 cm -1 / o C, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ~16 W/mK to ~9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe 2 channels indicates that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe 2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.KEYWORDS: van der Waals materials, tantalum diselenide, Raman spectroscopy, thermal conductivity, metal dichalcogenide, thin film *Corresponding authors: salguero@uga.edu (TTS) and balandin@ee.ucr.edu (AAB) 2 | P a g e