Two-Direction Prediction Method of Drilling Fluid Based on OS-ELM for Water Well Drilling
Yuan Xu,
Di Zhang,
Tianlang Xian
et al.
Abstract:In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid performance, allowing us to employ an OS-ELM algorithm derived from the extreme learning machine. Particularly, the proposed prediction method is bidirectional to identify an appropriate slurry formulation. The forward p… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.