Next-generation internet services such as live TV and video on demand require high bandwidth and ultra-low latency. The ever-increasing volume, dynamicity and stringent requirements of these services’ demands are generating new challenges to nowadays telecom networks. To decrease expenses, service-layer content providers are delivering their content near the end users, thus allowing a low latency and tailored content delivery. As a consequence of this, unseen metro and even core traffic dynamicity is arising with changes in the volume and direction of the traffic along the day.
A tremendous effort to efficiently manage networks is currently ongoing towards the realisation of 5G networks. This translates in looking for network architectures supporting dynamic resource allocation, fulfilling strict service requirements and minimising the total cost of ownership (TCO). In this regard, in-operation network planning was recently proven to successfully support various network reconfiguration use cases in prospective scenarios. Nevertheless, additional research to extend in-operation planning capabilities from typical reactive optimization schemes to proactive and predictive schemes based on the analysis of network monitoring data is required.
A hot topic raising increasing attention is cognitive networking, where an elevated knowledge about the network could be obtained as a result of introducing data analytics in the telecom operator’s infrastructure. By using predictive knowledge about the network traffic, in-operation network planning mechanisms could be enhanced to efficiently adapt the network by means of future traffic prediction, thus achieving cognitive in-operation network planning.
In this thesis, we focus on studying mechanisms to enable cognitive in-operation network planning in core networks. In particular, we focus on dynamically reconfiguring virtual network topologies (VNT) at the MPLS layer, covering a number of detailed objectives. First, we start studying mechanisms to allow network traffic flow modelling, from monitoring and data transformation to the estimation of predictive traffic model based on this data. By means of these traffic models, then we tackle a cognitive approach to periodically adapt the core VNT to current and future traffic, using predicted traffic matrices based on origin-destination (OD) predictive models. This optimization approach, named VENTURE, is efficiently solved using dedicated heuristic algorithms and its feasibility is demonstrated in an experimental in-operation network planning environment. Finally, we extend VENTURE to consider core flows dynamicity as a result of metro flows re-routing, which represents a meaningful dynamic traffic scenario. This extension, which entails enhancements to coordinate metro and core network controllers with the aim of allowing fast adaption of core OD traffic models, is evaluated and validated in terms of traffic models accuracy and experimental feasibility.
Els serveis d’internet de nova generació tals com la televisió en viu o el vídeo sota demanda requereixen d’un gran ample de banda i d’ultra-baixa latència. L’increment continu del volum, dinamicitat i requeriments d’aquests serveis està generant nous reptes pels teleoperadors de xarxa. Per reduir costs, els proveïdors de contingut estan disposant aquests més a prop dels usuaris finals, aconseguint així una entrega de contingut feta a mida. Conseqüentment, estem presenciant una dinamicitat mai vista en el tràfic de xarxes de metro amb canvis en la direcció i el volum del tràfic al llarg del dia. Actualment, s’està duent a terme un gran esforç cap a la realització de xarxes 5G. Aquest esforç es tradueix en cercar noves arquitectures de xarxa que suportin l’assignació dinàmica de recursos, complint requeriments de servei estrictes i minimitzant el cost total de la propietat. En aquest sentit, recentment s’ha demostrat com l’aplicació de “in-operation network planning” permet exitosament suportar diversos casos d’ús de reconfiguració de xarxa en escenaris prospectius. No obstant, és necessari dur a terme més recerca per tal d’estendre “in-operation network planning” des d’un esquema reactiu d’optimització cap a un nou esquema proactiu basat en l’analítica de dades provinents del monitoritzat de la xarxa. El concepte de xarxes cognitives es també troba al centre d’atenció, on un elevat coneixement de la xarxa s’obtindria com a resultat d’introduir analítica de dades en la infraestructura del teleoperador. Mitjançant un coneixement predictiu sobre el tràfic de xarxa, els mecanismes de in-operation network planning es podrien millorar per adaptar la xarxa eficientment basant-se en predicció de tràfic, assolint així el que anomenem com a “cognitive in-operation network Planning”. En aquesta tesi ens centrem en l’estudi de mecanismes que permetin establir “el cognitive in-operation network Planning” en xarxes de core. En particular, ens centrem en reconfigurar dinàmicament topologies de xarxa virtual (VNT) a la capa MPLS, cobrint una sèrie d’objectius detallats. Primer comencem estudiant mecanismes pel modelat de fluxos de tràfic de xarxa, des del seu monitoritzat i transformació fins a l’estimació de models predictius de tràfic. Posteriorment, i mitjançant aquests models predictius, tractem un esquema cognitiu per adaptar periòdicament la VNT utilitzant matrius de tràfic basades en predicció de parells origen-destí (OD). Aquesta optimització, anomenada VENTURE, és resolta eficientment fent servir heurístiques dedicades i és posteriorment avaluada sota escenaris de tràfic de xarxa dinàmics. A continuació, estenem VENTURE considerant la dinamicitat dels fluxos de tràfic de xarxes de metro, el qual representa un escenari rellevant de dinamicitat de tràfic. Aquesta extensió involucra millores per coordinar els operadors de metro i core amb l’objectiu d’aconseguir una ràpida adaptació de models de tràfic OD. Finalment, proposem dues arquitectures de xarxa necessàries per aplicar els mecanismes anteriors en entorns experimentals, emprant protocols estat-de-l’art com són OpenFlow i IPFIX. La metodologia emprada per avaluar el treball anterior consisteix en una primera avaluació numèrica fent servir un simulador de xarxes íntegrament dissenyat i desenvolupat per a aquesta tesi. Després d’aquesta validació basada en simulació, la factibilitat experimental de les arquitectures de xarxa proposades és avaluada en un entorn de proves distribuït.