Dielectric elastomers (DEs) represent a class of electroactive polymers (EAPs) that exhibit a significant electromechanical effect, which has made them very attractive over the last several decades for use as soft actuators, sensors and generators. Based on the principle of a plane-parallel capacitor, dielectric elastomer sensors consist of a flexible and stretchable dielectric polymer sandwiched between two compliant electrodes. With the development of elastic polymers and stretchable conductors, flexible and sensitive dielectric elastomer tactile sensors, similar to human skin, have been used for measuring mechanical deformations, such as pressure, strain, shear and torsion. For high sensitivity and fast response, air gaps and microstructural dielectric layers are employed in pressure sensors or multiaxial force sensors. Multimodal dielectric elastomer sensors have been reported that can detect mechanical deformation but can also sense temperature, humidity, as well as chemical and biological stimulation in human-activity monitoring and personal healthcare. Hence, dielectric elastomer sensors have great potential for applications in soft robotics, wearable devices, medical diagnostic and structural health monitoring, because of their large deformation, low cost, ease of fabrication and ease of integration into monitored structures.