A new experimental setup for the generation of homogeneous, monodisperse bubble suspensions in turbulent duct flows in microgravity has been designed and tested in drop tower experiments. The setup provides independent control of bubble size, void fraction and degree of turbulence. The device combines several slug-flow injectors that produce monodisperse bubble jets, with a turbulent co-flow that ensures homogeneous spatial spreading. Bubble separation in the scale of the most energetic eddies of the flow, and bubble size sufficiently smaller, ensure that turbulence is most efficient as a mechanism for spatial spreading of bubbles while preventing coalescence, thus optimizing the homogeneous and monodisperse character of the suspension. The setup works in a regime for which bubbles are spherical, but sufficiently large compared to the turbulent dissipative scales to allow for two-way coupling between bubbles and carrying flow. The volume fraction is kept relatively small to facilitate particle tracking techniques. To illustrate the potential uses of the method we characterize the statistics of bubble velocity fluctuations in steady regimes and we characterize the transient relaxation of the buoyancy-driven pseudo-turbulence when gravity is switched-off.