Résumé : -Sous excitation modérée par un laser â impulsions, le silicium émet des électrons dans le vide à des énergies de photon bien en dessous du travail de sortie $. Deux processus distincts sont observés : 1) une photoémission à deux quanta à de faibles flux de photon et à de fortes énergies de photon (> $/2) et 2) une .thermoémission à de forts flux de photon ou à de faibles énergies de photon (< $/2). Alors que le premier effet donne des informations sur les propriétés de structures de bande électronique du silicium sous excitation, le second sonde les propriétés du plasma de porteurs photogé-nérés. La température de ce plasma est évaluée à (1800 ± 100) K pour une irradiance de (0.04 Jcm , 2ns).Abstract : -Under moderate pulsed laser excitation, silicon is shown to emit electrons in the vacuum at photon energies well below the work function $. Two distinct processes are observed, 1) a two-quantum photoemission at low photon fluxes and high photon energies (> $/2) arid, 2) a thermoemission at high photon fluxes or low photon energies (< §/2). While the first effect yields information about the electronic structure of silicon under irradiation, the second one probes the properties of the carrier plasma. The temperature of this plasma has been evaluated to (1800 + 100) K for (0.04 Jem , 2 ns) irradiances.1. Introduction -In the past few years, the behavior of semiconductors under intense pulsed laser excitation has attracted a great deal of attention, and several anomalous effects have been attributed to the high carrier densities involved (1). The interest for such topics has been renewed and focused by the controversy on pulsed laser annealing of silicon (2). It is usually agreed anyhow, that the formation of a hot electron-hole plasma precedes and initiates the observed effects. If thermalization of this plasma takes place, many electrons are likely to be driven high in the conduction band, and a number of them higher than the vacuum level. An electron emission should then be observed, even when the excitation photon energy is lower than the surface barrier potential f. A study of these electrons (overall yields, angular distribution, energy distribution) must yield information about the "heating" mechanisms. Up to now, most experiments of this kind have been carried out on metals (3-6). We report here the preliminary results of such a study on crystalline silicon.