In this paper, we present a logic MML S5 n which is a combination of multilattice logic and modal logic S5. MML S5 n is an extension of Kamide and Shramko's modal multilattice logic which is a multilattice analogue of S4. We present a cut-free hypersequent calculus for MML S5 n in the spirit of Restall's one for S5 and develop a Kripke semantics for MML S5 n , following Kamide and Shramko's approach. Moreover, we prove theorems for embedding MML S5 n into S5 and vice versa. As a result, we obtain completeness, cut elimination, decidability, and interpolation theorems for MML S5 n . Besides, we show the duality principle for MML S5 n . Additionally, we introduce a modification of Kamide and Shramko's sequent calculus for their multilattice version of S4 which (in contrast to Kamide and Shramko's original one) proves the interdefinability of necessity and possibility operators. Last, but not least, we present Hilbert-style calculi for all the logics in question as well as for a larger class of modal multilattice logics.