Artin's Conjecture on Primitive Roots states that a non-square non unit integer a is a primitive root modulo p for positive proportion of p. This conjecture remains open, but on average, there are many results due to P. J. Stephens (see [14], also [15]). There is a natural generalization of the conjecture for composite moduli. We can consider a as the primitive root modulo (Z/nZ) * if a is an element of maximal exponent in the group. The behavior is more complex for composite moduli, and the corresponding average results are provided by S. Li and C. Pomerance (see [8], [9], and [10]), and recently by the author (see [6]). P. J. Stephens included the second moment results in his work, but for composite moduli, there were no such results previously. We prove that the corresponding second moment result in this case.