Identifying underperforming photovoltaic (PV) modules is crucial to ensure optimal energy production and financial returns, as well as preventing potential safety hazards in case of severe damage. To this aim, current–voltage (I-V) curve tracing can be employed as in situ monitoring technique for the early detection of faults. In this paper, we introduce a novel low-cost, microcontroller-based I-V tracer for the diagnosis of individual PV modules. The tool features a unique power conditioning circuit, facilitating accurate data acquisition under static conditions as well as the even distribution of the measured points along the I-V curve. A specific active disconnecting circuit enables in situ and on-line measurement without interrupting the string power generation. The designed prototype is used to characterize a set of PV modules under real operating conditions. The measured I-V curves exhibit expected trends, with the measured data closely matching theoretical values and an estimated mean relative error less than 3%.