Morphological evolution of expanding shells of fast-mode magnetohydrodynamic (MHD) waves through an inhomogeneous ISM is investigated in order to qualitatively understand the complicated morphology of shell-type supernova remnants (SNR). Interstellar clouds with high Alfvén velocity act as concave lenses to diverge the MHD waves, while those with slow Alfvén velocity act as convex lenses to converge the waves to the focal points. By combination of various types of clouds and fluctuations with different Alfvén velocities, sizes, or wavelengths, the MHD-wave shells attain various morphological structures, exhibiting filaments, arcs, loops, holes, and focal strings, mimicking old and deformed SNRs.