Abstract:We prove upper and lower bounds for the number of eigenvalues of semi-bounded Schrödinger operators in all spatial dimensions. As a corollary, we obtain two-sided estimates for the sum of the negative eigenvalues of atomic Hamiltonians with Kato potentials. Instead of being in terms of the potential itself, as in the usual Lieb–Thirring result, the bounds are in terms of the landscape function, also known as the torsion function, which is a solution of (−Δ + V + M)uM = 1 in Rd; here M∈R is chosen so that the o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.