In the insurance industry, life insurers are required by regulators to meet capital requirements to avoid insolvency caused by, for example, sudden mortality changes due to the COVID-19 pandemic. To prevent any large movements in this required capital, insurance companies are motivated to establish hedging strategies to mitigate the inherent risk exposures they face. Nonetheless, devising and implementing risk mitigation solutions to risk managing capital requirement is frequently impeded by the computational complexities stemming from the extensive simulations required. In this paper, we delve into a simulation quandary concerning the management of solvency capital risk associated with mortality and longevity. More specifically, we introduce a thin-plate regression spline method as a surrogate alternative to the standard nested simulation approach. Using this efficient simulation method, we further investigate hedging strategies that utilize mortality-linked securities coupled with stochastic mortality dynamics. Our simulation results provide a numerical justification to the market-making of mortality-linked securities in the context of mortality and longevity capital risk management.