2022
DOI: 10.1016/j.compag.2021.106617
|View full text |Cite
|
Sign up to set email alerts
|

Two-step ResUp&Down generative adversarial network to reconstruct multispectral image from aerial RGB image

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 14 publications
0
2
0
1
Order By: Relevance
“…La utilización de redes neuronales convolucional ha traído consigo avances en la investigación de reconstrucción de imágenes multiespectrales [13]. Centrado en gran medida en la reconstrucción de MSI utilizando los canales R-G-B del MSI como entradas del modelo para la posterior de recopilación de información y análisis [14].…”
Section: Introductionunclassified
“…La utilización de redes neuronales convolucional ha traído consigo avances en la investigación de reconstrucción de imágenes multiespectrales [13]. Centrado en gran medida en la reconstrucción de MSI utilizando los canales R-G-B del MSI como entradas del modelo para la posterior de recopilación de información y análisis [14].…”
Section: Introductionunclassified
“…These advantages have made UAV one of the most optimal platforms for local regional scale remote sensing. The rapid developments in both engineering and sensor technology have enabled UAVs to contribute to a variety of uses, such as constructing three-dimensional terrain models of mountainous areas [1], water bodies [2], farming land [3][4][5], forests [6][7][8][9][10], and artificial structures [11], as well as estimating biomass storage of wood or grass resources [12,13],…”
Section: Introductionmentioning
confidence: 99%
“…A higher value correlates with increased vegetation density. Typically, the values can be categorized into five levels: values less than −0.1 depict areas like ground cloud, water, and snow cover; values between −0.1 and 0.1 indicate areas of rock and soil; values between 0.1 and 0.4 signify sparsely vegetated areas; values between 0.4 and 0.8 denote densely vegetated areas; and values greater than or equal to 0.8 characterize super-densely vegetated areas[58]. By comparing the NDVI values extracted from the recovered images to those from the cloud-free images, we are able to evaluate the methods' capability in preserving the distinctive land cover characteristics within the recovered images.…”
mentioning
confidence: 99%