This paper presents a 1600-pixel integrated neural stimulator with a correlated double-sampling readout (DSR) circuit for a subretinal prosthesis. The retinal stimulation chip inserted beneath the photoreceptor layer comprises an array of an active pixel sensor (APS) and biphasic pulse shaper. The DSR circuit achieves a high signal-to-noise ratio (SNR) of the APS with a short integration time to simultaneously improve the temporal and spatial resolutions of restored vision. This DSR circuit is adopted along with a 5 × 5-pixel tile, which reduces pixel size and improves the SNR by increasing the area occupied by storage capacitors. Moreover, a low-mismatch reference generator enables a low standard deviation between individual pulse shapers. The 1600-pixel retinal chip, fabricated using the 0.18 μm 1P6M CMOS process, occupies a total area of 4.3 mm × 3.3 mm and dissipates an average power of 3.4 mW; this was demonstrated by determining the stimulus current patterns corresponding to the illuminations of an LCD projector. Experimental results show that the proposed high-density stimulation array chip can achieve a high temporal resolution owing to its short integration time.