Abstract:The basic knowledge on neoplasms is increasing quickly; however, few advances have been achieved in clinical therapy against tumors. For this reason, the development of alternative drugs is relevant in the attempt to improve prognosis and to increase patients' survival. Snake venoms are natural sources of bioactive substances with therapeutic potential. The objective of this work was to identify and characterize the antitumoral effect of Crotalus durissus terrificus venom (CV) and its polypeptide, crotoxin, on benign and malignant tumors, respectively, pituitary adenoma and glioblastoma. The results demonstrated that CV possess a powerful antitumoral effect on benign (pituitary adenoma) and malignant (glioblastoma multiforme) tumors with IC50 values of 0.96 ± 0.11 μg/mL and 2.15 ± 0.2 μg/mL, respectively. This antitumoral effect is cell-cycle-specific and dependent on extracellular calcium, an important factor for crotoxin phospholipase A2 activity. The CV antitumoral effect can be ascribed, at least partially, to the polypeptide crotoxin that also induced brain tumor cell death. In spite of the known CV nephrotoxicity and neurotoxicity, acute treatment with its antitumoral dose established in vitro was not found to be toxic to the analyzed animals. These results indicate the biotechnological potential of CV as a source of pharmaceutical templates for cancer therapy.