(1) Background: Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk; (2) Methods: Twelve candidate biomarkers, which were identified in the augmented data and selected based on their fold-change relative to healthy controls and cross-reference to proteomics data previously obtained in the expansive TEDDY and DAISY cohorts, were measured in the original samples by ELISA; (3) Results: All 12 biomarkers had established connections with lipid/lipoprotein metabolism, immune function, inflammation, and diabetes, but only 7 were found to be markedly changed in the high-risk subjects compared to the healthy controls: ApoC1 and PON1 were reduced while CETP, CD36, FGFR1, IGHM, PCSK9, SOD1, and VCAM1 were elevated; (4) Conclusions: Results further highlight the promise of our data augmentation approach in unmasking important patterns and pathologically significant features in parallel multi-omics datasets obtained from small sample cohorts to facilitate the identification of promising candidate T1D biomarkers for downstream validation. They also support the potential utility of a composite biomarker signature of T1D risk characterized by the changes in the above markers.