2019
DOI: 10.35940/ijeat.f7974.088619
|View full text |Cite
|
Sign up to set email alerts
|

Type II Diabetes Prediction Using Combo of SVM ANN and Random Tree

Abstract: In 21th century, IT plays a very important and helpful role in health care industries acting as a savior to human life. Data mining and machine learning are two sides of healthcare-IT. Proposed system considers one of the most common chronic diseases called diabetes. India and almost all other countries are worried about diabetic patients, so diabetes can termed as a global chronic disease. In this paper, well-known predictive machine learning techniques viz. SVM, Random Tree and ANN are applied on PIMA datase… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 14 publications
(14 reference statements)
0
7
0
1
Order By: Relevance
“…A pesar que 15 de los artículos no describen la herramienta utilizada en su contenido, 8 de ellos pertenecen a la base datos PIDD como por ejemplo (O. Barrios et al, 2017b), (Wu et al, 2018), (Alehegn y Joshi, 2019), (Shetty y Katkar, 2019b) donde dichos autores utilizan las 8 variables del conjunto para realizar la predicción a través de la validación cruzada utilizada comúnmente en la herramienta de software WEKA.…”
Section: Resultsunclassified
“…A pesar que 15 de los artículos no describen la herramienta utilizada en su contenido, 8 de ellos pertenecen a la base datos PIDD como por ejemplo (O. Barrios et al, 2017b), (Wu et al, 2018), (Alehegn y Joshi, 2019), (Shetty y Katkar, 2019b) donde dichos autores utilizan las 8 variables del conjunto para realizar la predicción a través de la validación cruzada utilizada comúnmente en la herramienta de software WEKA.…”
Section: Resultsunclassified
“…The K-NN algorithm is a machine learning algorithm widely used for disease classification [6], one of which is diabetes. This research produces an accuracy of 74.59% [7] in another study predicting Atherosclerosis disease using the K-NN algorithm. The highest accuracy produced with the Hungarian dataset is 80% [8].…”
Section: Introductionmentioning
confidence: 86%
“…The developed system achieved 93.62 percent accuracy in the case of PIDD and 88.56 percent accuracy for a large set of data from 130 hospitals in the United States. For large dataset analysis, the NB and J48 prediction algorithms were found to be superior [6].…”
Section: Related Workmentioning
confidence: 99%