As the kinematic structure of an articulated manipulator affects the characteristics of its motion, rigidity, vibration, and force transmissibility, finding the most suitable kinematic structure for the desired task is important in the conceptual design phase. This paper proposes a systematic method for generating non-isomorphic graphs of articulated manipulators that consist of a fixed base, an end-effector, and a two-degree-of-freedom (DOF) intermediate kinematic chain connecting the two. Based on the analysis of the structural characteristics of articulated manipulators, the conditions that must be satisfied for manipulators to have a desired DOF is identified. Then, isomorphism-free graph generation methods are proposed based on the concepts of the symmetry of a graph, and the number of graphs generated are determined. As a result, 969 graphs of articulated manipulators that have two-DOF non-fractionated intermediate kinematic chains and 33,438 graphs with two-DOF fractionated intermediate kinematic chains are generated, including practical articulated manipulators widely used in industry.