The human soft palate plays an important role in respiration, swallowing, and speech. These motor activities depend on reflexes mediated by sensory nerve endings. To date, the details of human sensory innervation to the soft palate have not been demonstrated. In this study, eight adult human whole-mount (soft palate-tongue-pharynx-larynx-upper esophagus) specimens were obtained from autopsy. Each specimen was bisected in the midline, forming two equal and symmetrical halves. Eight hemi-specimens were processed with Sihler's stain, a whole-mount nerve staining technique. The remaining eight hemi-soft palates were used for immunohistochemical study. The soft palatal mucosa was dissected from the oral and nasal sides and prepared for neurofilament staining. Our results showed that the sensory nerve fibers formed a dense nerve plexus in the lamina propria of the soft palatal mucosa. There was a significant difference in the innervation density between both sides. Specifically, the oral side had higher density of sensory nerve fibers than the nasal side of the soft palate. The mean number and percent area of the sensory nerve fibers in the mucosa of the nasal side was 78% and 72% of those in the mucosa of the oral side, respectively (P < 0.0001). The data presented here could be helpful for further investigating the morphological and quantitative alterations in the sensory nerves in certain upper airway disorders involving the soft palate such as obstructive sleep apnea (OSA) and for designing effective therapeutic strategies to treat OSA. Anat Rec, 301:1861-1870, 2018. © 2018 Wiley Periodicals, Inc.