The continental shale oil reservoir has low permeability, high clay content, rich lamellar structure, and strong heterogeneity, which makes the reservoir vulnerable to hydration damage. In order to study characteristics of hydration damage and its influence on permeability of lamellar shale oil reservoirs, a series of experiments such as high-pressure mercury injection, steady gas permeability, rock thin section identification, and scanning electron microscope were carried out with the downhole core in Ordos Basin as the experimental object. The effects of water and water-based drilling fluid on pore size distribution, permeability, and rock microstructure were analyzed. Results show that the pore size of the reservoir is mainly nanoscale, and the pore size of shale changes most dramatically in the stage of hydration for 12-24 hours, while that of tuff changes most dramatically in 24-48 hours. The permeability increases rapidly with hydration time and then tends to be stable, among which the permeability of samples with lamellar structure in the direction parallel to the lamellar structure is most easily affected by hydration and changes fastest. Hydration leads to the formation of new pores, new fractures, and the expansion of existing fractures in rocks, especially in the strata containing large amounts of terrigenous clastic, lamellar structure, and pyrite. The new seepage channel increases the permeability of rock, and the soil powder and plugging particles in drilling fluid are easy to form protective mud cake in these places. These protective mud cakes not only change the microstructure of rock but also inhibit the influence of hydration on the pore space and permeability of rock, which play an effective role in preventing the mineral shedding on the rock surface, reducing the increase of micropores and delaying hydration.