Mutagenesis of recombinant 1 ␥-aminobutyric acid (GABA) receptors has previously identified five residues in the amino terminal extracellular domain that play an important role in GABA binding. Here, we present evidence that the tyrosine at position 102 of the 1 receptor is also associated with the agonist binding site. Wildtype and mutant 1 receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. When Tyr-102 was mutated to cysteine, serine, tryptophan, or glycine the EC 50 increased 31-, 214-, 664-, and 8752-fold, respectively. An increase in the IC 50 was also observed for the competitive antagonist 3-APMPA, but not for the non-competitive antagonist picrotoxin. Y102C was accessible to modification by methanethiosulfonate, and this modification was prevented by both GABA and 3-APMPA. An interesting characteristic of the Y102S mutant receptor was that, in the absence of GABA, there was an unusually high oocyte resting conductance that was blocked by both 3-APMPA and picrotoxin, indicating spontaneously opening GABA receptors. It appears that mutation of Tyr-102 perturbs the binding site and gates the pore. We conclude that Tyr-102 is a component of the GABA binding domain and speculate that Tyr-102 might be important for coupling agonist binding to channel opening.