Although (Soddy, Nature 92:399–400, 1913) inferred the existence of isotopes early last century, it was not until the discovery of the neutron by (Chadwick, Nature 129:312, 1932) that isotopes were understood to result from differing numbers of neutrons in atomic nuclei. (Urey, J Chem Soc 1947:562–581, 1947) predicted that different isotopes would behave slightly differently in chemical (and physical) reactions due to mass differences, leading to the concept of isotopic fractionation. The discovery that some elements transformed into other elements by radioactive decay happened even before the recognition of isotopes (Rutherford and Soddy, Lond Edinb Dublin Philos Mag 4:370–396, 1902), although the role that different isotopes played in this process was discovered later. The twin, and related, concepts of isotopes and radioactive decay have been used by geoscience and other scientific disciplines as tools to understand geochemical processes such as mineralization, and also the age and duration of these processes. This book is a review of how isotope geoscience has developed to better understand the processes of ore formation and metallogenesis, and thereby improve mineral system models used in exploration.