To cite this version:Eugène Abstract U-Th-Pb dating of monazite with the electron probe microanalyser (EPMA) is increasingly documented as a reliable geochronological method offering high spatial resolution. This method has been applied on monazite from the Cévennes migmatites and granitoids from the southeast of the French Massif Central. Measurements were performed on separated grains after systematic back-scattered electron (BSE) imaging. Monazites from migmatites record two main ages: (i) a protolith age of about 550-543 Ma obtained on inherited cores, and (ii) a migmatization event between 329 ± 5 and 323 ± 3 Ma recorded by monazite rims and all other monogenetic grains. Monazite from the peraluminous Rocles pluton yields a 318 ± 3 Ma age. Finally, three granite dykes are dated at 333 ± 6, 318 ± 5 and 311 ± 5 Ma; the older dyke is the most deformed of them and is interpreted as linked to the migmatization event; the two other dykes are geochronologically, petrologically and structurally coeval with the Rocles pluton. The data constrain the timing of crustal melting following Variscan thickening in the northern Cévennes area. Migmatization of Ordovician protoliths took place at 329-323 Ma and was shortly followed by intrusion of leucogranite at 318-311 Ma. The study shows that EPMA dating of monazite can be successfully used to resolve a close succession of regional melting events.