High-grade (> 10 g/t) gold mineralization in orogenic gold deposits is of significant economic importance. Understanding the formation of such enriched ore zones is critical for gold exploration success. The world-class Jundee-Bogada gold camp in the Yilgarn Craton of Western Australia comprises both high-grade (avg. > 10 g/t, Jundee deposit) and low-grade (avg. < 3 g/t, Bogada prospect) lodes, despite shared host stratigraphy. The paragenetic framework established for the Jundee gold deposit suggests that the overall gold endowment developed over three deformation events. An early episode of low-grade gold mineralization is associated with colloform-crustiform veins that formed during extensional deformation (DJB2A). A switch to transtensional deformation (DJB2B) resulted in brecciation of the colloform-crustiform veins and coeval deposition of native gold. Late reverse faults record evidence for a third mineralization stage resulting from a NE-SW-directed shortening (DJB3). Mineralization during this late stage was dominantly low-grade, with local occurrences of ultra-high-grade ore zones (> 100 g/t). Each event records transient changes in fluid chemistry during continued hydrothermal activity that spanned local deformation histories. We argue that at the Jundee gold deposit, protracted gold enrichment during three polyphased mineralization episodes resulted in the formation of high-grade gold ores. Whereas the complete metallogenic history is recorded at the Jundee deposit, gold within the Bogada prospect was introduced solely during the late contractional stage (DJB3), resulting in a bulk low-grade endowment. We hypothesize that gold enrichment in high-grade orogenic gold deposits is a direct consequence of the spatial superimposition of protracted ore-forming events.