We utilize new geological mapping, conventional isotope dilution-thermal ionization mass spectrometry (ID-TIMS) and sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon analyses, and whole-rock radiogenic isotope characteristics to distinguish two contrasting Proterozoic basement complexes in the international border region southeast of Yuma, Arizona. Strategically located near the truncated southwest margin of Laurentia, these Proterozoic exposures are separated by a northwest-striking Late Cretaceous batholith. Although both complexes contain strongly deformed Paleoproterozoic granitoids (augen gneisses) intruded into fi ne-grained host rocks, our work demonstrates marked differences in age, host rock composition, and structure between the two areas.The Western Complex reveals a >5-km-thick tilted section of fi nely banded felsic, intermediate, and mafi c orthogneiss interspersed with tabular intrusive bodies of medium-grained leucocratic biotite granite (1696 ± 11 Ma; deepest level), mediumgrained hornblende-biotite granodiorite (1722 ± 12 Ma), and coarse-grained porphyritic biotite granite (1725 ± 19 Ma; shallowest level). Penetrative ductile deformation has converted the granites to augen gneisses and caused isoclinal folding and transposition of primary contacts. Exposed in a belt of northwest-trending folds, these rocks preserve southwest-vergent shear fabric annealed during amphibolite facies Nourse, J.A., Premo, W.R., Iriondo, A., and Stahl, E.R., 2005, Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora-Arizona international border region, in Anderson, T.on May 31, 2015 specialpapers.gsapubs.org Downloaded from 124 J.A. Nourse et al.
metamorphism, when crystalloblastic textures developed. Deformation and regional metamorphism occurred before emplacement of 1.1 Ga(?) mafi c dikes.Throughout the Eastern Complex, meta-arkose, quartzite, biotite schist, and possible felsic metavolcanic rocks comprise the country rocks of strongly foliated medium-and coarse-grained biotite granite augen gneisses that yield mean 207 Pb/ 206 Pb ages of 1646 ± 10 Ma, 1642 ± 19 Ma, and 1639 ± 15 Ma. Detrital zircons from four samples of host sandstone are isotopically disturbed; nevertheless, the data indicate a restricted provenance (ca. 1665 Ma to 1650 Ma), with two older grains (1697 and 1681 Ma). The pervasively recrystallized Paleoproterozoic map units strike parallel to foliation and are repeated in south-trending folds that are locally refolded about easterly hinges. Southeasterly lineation developed in augen gneiss and host strata becomes penetrative in local domains of L-tectonite. Regional metamorphism associated with this tectonism persisted until ca. 1590 Ma, as recorded by metamorphic growths within some zircon grains. Mesoproterozoic intrusions that crosscut the Paleoproterozoic metasediments and augen gneisses include coarsely porphyritic biotite granite (1432 ± 6 Ma) and diabase dikes (1.1 Ga?). Emplacement of the granite was accompanied by secondary hig...