The field of (U-Th)/He geochronology and thermochronology has grown enormously over the past ∼25 years. The tool is applicable across much of geologic time, new (U-Th)/He chronometers are under continuous development, and the method is used in a diverse array of studies. Consequently, the technique has a rapidly expanding user base, and new labs are being established worldwide. This presents both opportunities and challenges. Currently there are no universally agreed-upon protocols for reporting measured (U-Th)/He data or data derivatives. Nor are there standardized practices for reporting He diffusion kinetic, 4He/3He, or continuous ramped heating data. Approaches for reporting uncertainties associated with all types of data also vary widely. Here, we address these issues. We review the fundamentals of the methods, the types of materials that can be dated, how data are acquired, the process and choices associated with data reduction, and make recommendations for data and uncertainty reporting. We advocate that both the primary measured and derived data be reported, along with statements of assumptions, appropriate references, and clear descriptions of the methods used to compute derived data from measured values. The adoption of more comprehensive and uniform approaches to data and uncertainty reporting will enable data to be re-reduced in the future with different interpretative contexts and data reduction methods, and will facilitate inter-comparison of data sets generated by different laboratories. Together, this will enhance the value, cross-disciplinary use, reliability, and ongoing development of (U-Th)/He chronology.