The
interaction of Eu(III) with thin sections of migmatized gneiss
from the Bukov Underground Research Facility (URF), Czech Republic,
was characterized by microfocus time-resolved laser-induced luminescence
spectroscopy (μTRLFS) with a spatial resolution of ∼20 μm, well below typical grain
sizes of the
material. By this approach, sorption processes can be characterized
on the molecular level while maintaining the relationship of the speciation
with mineralogy and topography. The sample mineralogy was characterized
by powder X-ray diffraction and Raman microscopy, and the sorption
was independently quantified by autoradiography using 152Eu. Representative μTRLFS studies over large areas of multiple
mm2 reveal that sorption on the heterogeneous material
is not dominated by any of the typical major constituent minerals
(quartz, feldspar, and mica). Instead, minor phases such as chlorite
and prehnite control the Eu(III) distribution, despite their low contribution
to the overall composition of the material, as well as common but
less studied phases like Mg–hornblende. In particular, prehnite
shows high a sorption uptake as well as strong binding of Eu to the
mineral surface. Sorption on prehnite and hornblende happens at the
expense of feldspar, which showed the highest sorption uptake in a
previous spatially resolved study on granitic rock. Similarly, sorption
on quartz is reduced, even though only low quantities of strongly
bound Eu(III) were found here previously. Our results illustrate how
competition of mineral surfaces for adsorbing cations drives the metal
distribution in heterogeneous systems.