Abstract:Accurate estimation of above ground biomass (AGB) is very important for crop growth monitoring. The objective of this study was to estimate rice biomass by utilizing structural and meteorological features with widely used spectral features. Structural features were derived from the triangulated irregular network (TIN), which was directly built from structure from motion (SfM) point clouds. Growing degree days (GDD) was used as the meteorological feature. Three models were used to estimate rice AGB, including t… Show more
“…Some studies used spectral information [2,11,18,24,26,43,58,[60][61][62] and some structural information [1,8,22,23,28,34,48,50,55,[63][64][65]. Others used both [3][4][5][6]9,12,16,20,21,25,30,33,49,57,[66][67][68], while a few studies used spectral and structural metrics plus another data type [13,27,69] (Table A1). Within these categories, a wide range of species, study areas and methods are examined, demonstrating the applicability of UAS data to AGB estimation in agricultural and non-agricultural environments.…”
Section: Input Datamentioning
confidence: 99%
“…Mean height [3,9,12,13,15,16,[19][20][21]23,25,28,30,34,[48][49][50]57,58,63,65,[67][68][69][74][75][76] Maximum height [1,3,4,13,28,30,34,48,57,63,65,69] Minimum height [3,28,34,48,57,63,65,69] Median height [12,21,27,48,63,65,…”
Section: Heightmentioning
confidence: 99%
“…[68] TIN-based structure, area, slope [13] Mean, median and maximum height metrics provide information on the vertical distribution of the vegetation canopy [3,69]. Maximum or median height appear to be particularly useful for trees.…”
Section: Heightmentioning
confidence: 99%
“…Percentiles of height and metrics such as the coefficient of variation (CV) or standard deviation (SD) of mean height can also be useful because they shed light on the horizontal and vertical complexity and heterogeneity of the canopy [13,15]. Wijensingha et al [63] found 75th percentile of height was the best among the ten height variables compared, producing moderate accuracy in grassland AGB estimation from linear regression models (R 2 = 0.58-0.62).…”
Section: Heightmentioning
confidence: 99%
“…In agricultural systems, AGB is a key agro-ecological indicator [4,10] that can be used to monitor crop growth, light use efficiency, carbon stock and physiological condition [3,5,6,[11][12][13][14][15][16]; predict crop yield and ensure yield quality [2,3,5,[12][13][14][17][18][19][20][21][22][23]; inform precision agriculture practices [3,15,[21][22][23]; maximize efficiency of fertilization and watering [4,10,14,21]; detect growth differences among phenotypes or cultivars [10,23]; calculate nitrogen content and assess nutrient status of plants [24][25][26]; and optimize economic decision-making throughout the growing season [3,14,15,19,22,27].…”
Interest in the use of unmanned aerial systems (UAS) to estimate the aboveground biomass (AGB) of vegetation in agricultural and non-agricultural settings is growing rapidly but there is no standardized methodology for planning, collecting and analyzing UAS data for this purpose. We synthesized 46 studies from the peer-reviewed literature to provide the first-ever review on the subject. Our analysis showed that spectral and structural data from UAS imagery can accurately estimate vegetation biomass in a variety of settings, especially when both data types are combined. Vegetation-height metrics are useful for trees, while metrics of variation in structure or volume are better for non-woody vegetation. Multispectral indices using NIR and red-edge wavelengths normally have strong relationships with AGB but RGB-based indices often outperform them in models. Including measures of image texture can improve model accuracy for vegetation with heterogeneous canopies. Vegetation growth structure and phenological stage strongly influence model accuracy and the selection of useful metrics and should be considered carefully. Additional factors related to the study environment, data collection and analytical approach also impact biomass estimation and need to be considered throughout the workflow. Our review shows that UASs provide a capable tool for fine-scale, spatially explicit estimations of vegetation AGB and are an ideal complement to existing ground- and satellite-based approaches. We recommend future studies aimed at emerging UAS technologies and at evaluating the effect of vegetation type and growth stages on AGB estimation.
“…Some studies used spectral information [2,11,18,24,26,43,58,[60][61][62] and some structural information [1,8,22,23,28,34,48,50,55,[63][64][65]. Others used both [3][4][5][6]9,12,16,20,21,25,30,33,49,57,[66][67][68], while a few studies used spectral and structural metrics plus another data type [13,27,69] (Table A1). Within these categories, a wide range of species, study areas and methods are examined, demonstrating the applicability of UAS data to AGB estimation in agricultural and non-agricultural environments.…”
Section: Input Datamentioning
confidence: 99%
“…Mean height [3,9,12,13,15,16,[19][20][21]23,25,28,30,34,[48][49][50]57,58,63,65,[67][68][69][74][75][76] Maximum height [1,3,4,13,28,30,34,48,57,63,65,69] Minimum height [3,28,34,48,57,63,65,69] Median height [12,21,27,48,63,65,…”
Section: Heightmentioning
confidence: 99%
“…[68] TIN-based structure, area, slope [13] Mean, median and maximum height metrics provide information on the vertical distribution of the vegetation canopy [3,69]. Maximum or median height appear to be particularly useful for trees.…”
Section: Heightmentioning
confidence: 99%
“…Percentiles of height and metrics such as the coefficient of variation (CV) or standard deviation (SD) of mean height can also be useful because they shed light on the horizontal and vertical complexity and heterogeneity of the canopy [13,15]. Wijensingha et al [63] found 75th percentile of height was the best among the ten height variables compared, producing moderate accuracy in grassland AGB estimation from linear regression models (R 2 = 0.58-0.62).…”
Section: Heightmentioning
confidence: 99%
“…In agricultural systems, AGB is a key agro-ecological indicator [4,10] that can be used to monitor crop growth, light use efficiency, carbon stock and physiological condition [3,5,6,[11][12][13][14][15][16]; predict crop yield and ensure yield quality [2,3,5,[12][13][14][17][18][19][20][21][22][23]; inform precision agriculture practices [3,15,[21][22][23]; maximize efficiency of fertilization and watering [4,10,14,21]; detect growth differences among phenotypes or cultivars [10,23]; calculate nitrogen content and assess nutrient status of plants [24][25][26]; and optimize economic decision-making throughout the growing season [3,14,15,19,22,27].…”
Interest in the use of unmanned aerial systems (UAS) to estimate the aboveground biomass (AGB) of vegetation in agricultural and non-agricultural settings is growing rapidly but there is no standardized methodology for planning, collecting and analyzing UAS data for this purpose. We synthesized 46 studies from the peer-reviewed literature to provide the first-ever review on the subject. Our analysis showed that spectral and structural data from UAS imagery can accurately estimate vegetation biomass in a variety of settings, especially when both data types are combined. Vegetation-height metrics are useful for trees, while metrics of variation in structure or volume are better for non-woody vegetation. Multispectral indices using NIR and red-edge wavelengths normally have strong relationships with AGB but RGB-based indices often outperform them in models. Including measures of image texture can improve model accuracy for vegetation with heterogeneous canopies. Vegetation growth structure and phenological stage strongly influence model accuracy and the selection of useful metrics and should be considered carefully. Additional factors related to the study environment, data collection and analytical approach also impact biomass estimation and need to be considered throughout the workflow. Our review shows that UASs provide a capable tool for fine-scale, spatially explicit estimations of vegetation AGB and are an ideal complement to existing ground- and satellite-based approaches. We recommend future studies aimed at emerging UAS technologies and at evaluating the effect of vegetation type and growth stages on AGB estimation.
In 2011, a yacht marina was built in Sopot (the largest holiday resort in Poland), which initiated the formation of a local shallowing of the bottom related to the tombolo effect. The building of the marina led to disturbances in the transmission of bottom deposits along the coast, which resulted from waves and the shift of the beach coastline by approx. 50 m towards the sea. Its effects include progressive morphological changes in the shore and the sea bottom, which will lead to the formation of a peninsula between the shore and the marina in the future. This paper presents the results of a comparative analysis of the accuracy of 3D modelling of the tombolo phenomenon in the onshore part of the beach using both point clouds obtained by terrestrial laser scanning methods and photogrammetric methods based on unmanned aerial vehicle photographs. The methods subjected to assessment include both those for land modelling and for determining the coastline course and its changes. The analysis results prove the existence of sub-metre differences in the imaged relief and the coastline course, which were demonstrated using an analysis of land cross-sections. The possibilities and limitations of both methods are demonstrated as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.