1907
DOI: 10.1002/andp.19073280806
|View full text |Cite
|
Sign up to set email alerts
|

Über den Einfluß von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
38
0
4

Year Published

1956
1956
2017
2017

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 132 publications
(45 citation statements)
references
References 0 publications
3
38
0
4
Order By: Relevance
“…All analytical equations mentioned in this section are valid for unbounded flows only. Ladenburg [14] as well as Faxén [13] determined theoretically and e.g. Fidleris and Whitmore [15] and Sutterby [16] found experimentally that the influence of walls is to increase the drag.…”
Section: Introductionmentioning
confidence: 96%
“…All analytical equations mentioned in this section are valid for unbounded flows only. Ladenburg [14] as well as Faxén [13] determined theoretically and e.g. Fidleris and Whitmore [15] and Sutterby [16] found experimentally that the influence of walls is to increase the drag.…”
Section: Introductionmentioning
confidence: 96%
“…to (D/D,) = 0.32. Ladenburg (11) has also presented a correction for the effect of the bottom of the cylinder. This correction, based on the solution for a sphere falling in an infinite fluid bounded at the bottom by an infinite flat plate, appears to overestimate the bottom correction.…”
Section: And Pearson Ismentioning
confidence: 97%
“…No entanto, SCS examinaram o que eles chamam de "enganosa simplicidade" desse método, coletando dados de velocidade terminal por meio de filmagem de esferas de aço em queda dentro de tubos cilíndricos de diversos diâmetros, contendo glicerina, e concluíram que o métodó e válido apenas para números de Reynolds R d <0,5, concordando com Liao [3], ainda assim desde que se faça uma correção na velocidade devido ao efeito do diâmetro finito do tubo. A proximidade da esfera com a parede do tubo aumenta o gradiente de velocidade no fluido em torno da esfera, aumentando, consequentemente, a força viscosa e tornando necessário corrigir a sua expressão, dada pela equação (2), por um fator adimensional λ 1 , chamado fator de Ladenburg [16], que depende da relação entre os diâmetros da esfera e do tubo, ficando…”
Section: Número De Reynolds Força E Coeficiente De Arrastounclassified