1964
DOI: 10.1007/bf01897041
|View full text |Cite
|
Sign up to set email alerts
|

Über die dichteste Kugelpackung im hyperbolischen Raum

Abstract: w 1. Einfiihrung Das Problem der dichtesten Packung gleich grol3er Kugeln ist bekanntlich fiir den n-dimensionalen Euklidischen Raum bei n =>3 noch ungel6st. Die beste bekannte obere Absch~itzung fiir die Dichte d einer solchen Lagerung stammt yon ROGERS [13]: Man lege um jeden Eckpunkt eines Iegulfiren Simplexes yon der Kantenl~inge 2r eine Kugel vom Radius r; bezeichnet d, die Dichte der Kugeln im Simplex, so gilt d<~do. Ffir einen beliebigen Raum konstanter Kriimmung wurde diese Abschgtzung 9 im Falle n = 2… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

4
69
0

Year Published

1971
1971
2019
2019

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 55 publications
(73 citation statements)
references
References 5 publications
4
69
0
Order By: Relevance
“…In 1963 BÖ RÖ CZKY [3] proved FEJES T O OTH's conjecture (1) for n ¼ 3. More precisely: In S 3 , E 3 or H 3 consider a saturated packing of at least 4 spheres with radius r (on S 3 : r <=4).…”
Section: Introductionmentioning
confidence: 96%
See 2 more Smart Citations
“…In 1963 BÖ RÖ CZKY [3] proved FEJES T O OTH's conjecture (1) for n ¼ 3. More precisely: In S 3 , E 3 or H 3 consider a saturated packing of at least 4 spheres with radius r (on S 3 : r <=4).…”
Section: Introductionmentioning
confidence: 96%
“…The statement clearly implies that the density of packing with respect to the whole space S 3 or E Let us return to packings in 3-dimensional spaces, first in H 3 . In the common paper with BÖ RÖ CZKY [3], FLORIAN proved that d 3 ðrÞ is a strictly increasing function for 0<r <1. Thus the (local) density of any packing of equal spheres in H 3 satisfies…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…In [10] we proved that this optimal horoball packing configuration in H 3 is not unique. We gave several more examples of regular horoball packing arrangements based on asymptotic Coxeter tilings using horoballs of different types, that is horoballs that have different n-dim Optimal Coxeter simplex packing density Numerical Value d n (∞) ∆ relative densities with respect to the fundamental domain, that yield the Böröczky-Floriantype simplicial upper bound [4].…”
Section: Introductionmentioning
confidence: 99%
“…He proved this property for n = 2, and stated it as a conjecture for n > 3. Using the later observation by Böröczky [2] that there is no reasonable notion of density of sphere packings relative to the whole space H n , [3,5] proved a modified version of this conjecture for n > 3. Several equivalent characterizations of regular hyperbolic simplices are given in [17].…”
Section: Introductionmentioning
confidence: 99%