More than 200 years ago, Pfaff found two generalizations of Leibniz's rule for the nth derivative of a product of two functions. Thirty years later Cauchy found two similar identities, one equivalent to one of Pfaff's and the other new. We give simple proofs of these little-known identities and some further history. We also give applications to Abel-Rothe type binomial identities, Lagrange's series, and Laguerre and Jacobi polynomials. Most importantly, we give extensions that are related to the Pfaff/Cauchy theorems as Hurwitz's generalized binomial theorems are to the Abel-Rothe identities. We apply these extensions to Laguerre and Jacobi polynomials as well.