Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rephotography is the process of recapturing the photograph of a location from the same perspective in which it was captured earlier. A rephotographed image is the best presentation to visualize and study the social changes of a location over time. Traditionally, only expert artists and photographers are capable of generating the rephotograph of any specific location. Manual editing or human eye judgment that is considered for generating rephotographs normally requires a lot of precision, effort and is not always accurate. In the era of computer science and deep learning, computer vision techniques make it easier and faster to perform precise operations to an image. Until now many research methodologies have been proposed for rephotography but none of them is fully automatic. Some of these techniques require manual input by the user or need multiple images of the same location with 3D point cloud data while others are only suggestions to the user to perform rephotography. In historical records/archives most of the time we can find only one 2D image of a certain location. Computational rephotography is a challenge in the case of using only one image of a location captured at different timestamps because it is difficult to find the accurate perspective of a single 2D historical image. Moreover, in the case of building rephotography, it is required to maintain the alignments and regular shape. The features of a building may change over time and in most of the cases, it is not possible to use a features detection algorithm to detect the key features. In this research paper, we propose a methodology to rephotograph house images by combining deep learning and traditional computer vision techniques. The purpose of this research is to rephotograph an image of the past based on a single image. This research will be helpful not only for computer scientists but also for history and cultural heritage research scholars to study the social changes of a location during a specific time period, and it will allow users to go back in time to see how a specific place looked in the past. We have achieved good, fully automatic rephotographed results based on façade segmentation using only a single image.
Rephotography is the process of recapturing the photograph of a location from the same perspective in which it was captured earlier. A rephotographed image is the best presentation to visualize and study the social changes of a location over time. Traditionally, only expert artists and photographers are capable of generating the rephotograph of any specific location. Manual editing or human eye judgment that is considered for generating rephotographs normally requires a lot of precision, effort and is not always accurate. In the era of computer science and deep learning, computer vision techniques make it easier and faster to perform precise operations to an image. Until now many research methodologies have been proposed for rephotography but none of them is fully automatic. Some of these techniques require manual input by the user or need multiple images of the same location with 3D point cloud data while others are only suggestions to the user to perform rephotography. In historical records/archives most of the time we can find only one 2D image of a certain location. Computational rephotography is a challenge in the case of using only one image of a location captured at different timestamps because it is difficult to find the accurate perspective of a single 2D historical image. Moreover, in the case of building rephotography, it is required to maintain the alignments and regular shape. The features of a building may change over time and in most of the cases, it is not possible to use a features detection algorithm to detect the key features. In this research paper, we propose a methodology to rephotograph house images by combining deep learning and traditional computer vision techniques. The purpose of this research is to rephotograph an image of the past based on a single image. This research will be helpful not only for computer scientists but also for history and cultural heritage research scholars to study the social changes of a location during a specific time period, and it will allow users to go back in time to see how a specific place looked in the past. We have achieved good, fully automatic rephotographed results based on façade segmentation using only a single image.
Discussing the current AHRC/LABEX-funded EyCon (Early Conflict Photography 1890-1918 and Visual AI) project, this article considers potentially problematic metadata and how it affects the accessibility of digital visual archives. The authors deliberate how metadata creation and enrichment could be improved through Artificial Intelligence (AI) tools and explore the practical applications of AI-reliant tools to analyse a large corpus of photographs and create or enrich metadata. The amount of visual data created by digitisation efforts is not always followed by the creation of contextual metadata, which is a major problem for archival institutions and their users, as metadata directly affects the accessibility of digitised records. Moreover, the scale of digitisation efforts means it is often beyond the scope of archivists and other record managers to individually assess problematic or sensitive images and their metadata. Additionally, existing metadata for photographic and visual records are presenting issues in terms of out-dated descriptions or inconsistent contextual information. As more attention is given to the creation of accessible digital content within archival institutions, we argue that too little is being given to the enrichment of record data. In this article, the authors ask how new tools can address incomplete or inaccurate metadata and improve the transparency and accessibility of digital visual records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.