In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the 2-variable $k$-AC mixed type functional equation$$\begin{aligned}& f(x+k y, z+k w)+f(x-k y, z-k w) \\& \quad=k^2[f(x+y, z+w)+f(x-y, z-w)]+2\left(1-k^2\right) f(x, z) .\end{aligned}$$for any $k \in Z-\{0, \pm 1\}$ in $\alpha$-Šerstnev Menger Probabilistic normed spaces.