Direct electron transfer (DET)-type bioelectrocatalysis, which couples electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects studied over the past decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and to improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by protein engineering approach for the DET-type reaction. This review summarizes the resent progresses in this field of the research, while taking into consideration of the importance of nanostructure of electrodes as well as redox enzymes. Described are basic concepts and theoretical aspects of DET-type bioelectrocatalysis, significance of nanostructures as scaffolds for DET-type reactions, protein engineering approached for DET-type reactions, and concepts and facts of bidirectional DET-type reactions, from a cross-disciplinary viewpoint.