Current investigations of performance improvement in prestressed concrete containment vessels (PCCVs) with fiber reinforcement are scarce, and the type of fiber to select for PCCVs is not explicitly stated. The failure mechanism of PCCVs with fiber reinforcement under internal pressure is investigated in this paper. The effects of different fiber types, including rigid fiber, flexible fiber, and hybrid fiber, are considered for the creation of fiber-reinforced PCCVs. The mechanical behavior between conventional and fiber-reinforced PCCVs is scientifically compared and identified. The results demonstrate that to achieve the aim of inhibiting early cracking of the concrete, any type of fiber can be taken into account. The performance of the ultimate pressure capacity and yielding of the liner can be promoted, respectively, by introducing steel, steel-PP, and steel-PVA fiber-reinforced concrete. Additionally, the failure regions can be controlled to a certain extent under ultimate internal pressure via the appropriate use of FRC.