Abstract:We address the following decision problem. Given a numeration system U and a U -recognizable set X ⊆ N, i.e. the set of its greedy U -representations is recognized by a finite automaton, decide whether or not X is ultimately periodic. We prove that this problem is decidable for a large class of numeration systems built on linearly recurrent sequences. Based on arithmetical considerations about the recurrence equation and on p-adic methods, the DFA given as input provides a bound on the admissible periods to te… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.