The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowiremorphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages. In contrast to conventional nanoelectromechanical switches actuated by unidirectional electrostatic attraction, the NW-NEM switch is bidirectionally driven by Lorentz force to allow the use of a large air gap for excellent electrical isolation, while achieving a record-low driving voltage of <0.2 V. Furthermore, the introduction of the Lorentz force allows the NW-NEM switch to effectively overcome the adhesion force to recover to the turn-off state.