Nanomaterials are driving advances in technology due to their oftentimes superior properties over bulk materials. In particular, their thermal properties become increasingly important as efficient heat dissipation is required to realize high-performance electronic devices, reduce energy consumption, and prevent thermal damage. One application where nanomaterials can play a crucial role is extreme ultraviolet (EUV) lithography, where pellicles that protect the photomask from particle contamination have to be transparent to EUV light, mechanically strong, and thermally conductive in order to withstand the heat associated with high-power EUV radiation. Free-standing carbon nanotube (CNT) films have emerged as candidates due to their high EUV transparency and ability to withstand heat. However, the thermal transport properties of these films are not well understood beyond bulk emissivity measurements. Here, we measure the thermal conductivity of free-standing CNT films using all-optical Raman thermometry at temperatures between 300 and 700 K. We find thermal conductivities up to 50 W m −1 K −1 for films composed of double-walled CNTs, which rises to 257 W m −1 K −1 when considering the CNT network alone. These values are remarkably high for randomly oriented CNT networks, roughly seven times that of single-walled CNT films. The enhanced thermal conduction is due to the additional wall, which likely gives rise to additional heat-carrying phonon modes and provides a certain resilience to defects. Our results demonstrate that free-standing double-walled CNT films efficiently dissipate heat, enhancing our understanding of these promising films and how they are suited to applications in EUV lithography.