Background
There is a growing demand for fast and reliable plant biomolecular analyses. DNA extraction is the major bottleneck in plant nucleic acid-based applications especially due to the complexity of tissues in different plant species. Conventional methods for plant cell lysis and DNA extraction typically require extensive sample preparation processes and large quantities of sample and chemicals, elevated temperatures, and multiple sample transfer steps which pose challenges for high throughput applications.
Results
In a prior investigation, an ionic liquid (IL)-based modified vortex-assisted matrix solid phase dispersion approach was developed using the model plant, Arabidopsis thaliana (L.) Heynh. Building upon this foundational study, the present study established a simple, rapid and efficient protocol for DNA extraction from milligram fragments of plant tissue representing a diverse range of taxa from the plant Tree of Life including 13 dicots and 4 monocots. Notably, the approach was successful in extracting DNA from a century old herbarium sample. The isolated DNA was of sufficient quality and quantity for sensitive molecular analyses such as qPCR. Two plant DNA barcoding markers, the plastid rbcL and nuclear ribosomal internal transcribed spacer (nrITS) regions were selected for DNA amplification and Sanger sequencing was conducted on PCR products of a representative dicot and monocot species. Successful qPCR amplification of the extracted DNA up to 3 weeks demonstrated that the DNA extracted using this approach remains stable at room temperature for an extended time period prior to downstream analysis.
Conclusions
The method presented here is a rapid and simple approach enabling cell lysis and DNA extraction from 1.5 mg of plant tissue across a broad range of plant taxa. Additional purification prior to DNA amplification is not required due to the compatibility of the extraction solvents with qPCR. The method has tremendous potential for applications in plant biology that require DNA, including barcoding methods for agriculture, conservation, ecology, evolution, and forensics.