Abstract:Optically anisotropic materials show important advantages in constructing polarization-dependent optical devices. Very recently, a new type of two-dimensional van der Waals (vdW) material, known as α-phase molybdenum trioxide (α-MoO3), has sparked considerable interest owing to its highly anisotropic characteristics. In this work, we theoretically present an anisotropic metamaterial absorber composed of α-MoO3 rings and dielectric layer stacking on a metallic mirror. The designed absorber can exhibit ultra-nar… Show more
“…The blocking capability of EM waves can be understood by skin depth , where wavelength is proportional to skin depth. So, a higher skin depth is required to block the larger wavelength [ 17 , 51 ]. Figure 7 shows the investigation of absorption property for different back layer thicknesses from h1 = 105 to 65, where the absorption is reduced in the near-infrared region with the decrease of the thickness h1.…”
The visible and infrared wavelengths are the most frequently used electromagnetic (EM) waves in the frequency spectrum; able to penetrate the atmosphere and reach Earth’s surface. These wavelengths have attracted much attention in solar energy harvesting; thermography; and infrared imaging applications for the detection of electrical failures; faults; or thermal leakage hot spots and inspection of tapped live energized components. This paper presents a numerical analysis of a compact cubic cross-shaped four-layer metamaterial absorber (MA) structure by using a simple metal-dielectric-metal-dielectric configuration for wideband visible and infrared applications. The proposed MA achieved above 80% absorption in both visible and near-infrared regions of the spectrum from 350 to 1250 nm wavelength with an overall unit cell size of 0.57λ × 0.57λ × 0.59λ. The SiO2 based anti-reflection coating of sandwiched tungsten facilitates to achieve the wide high absorption bandwidth. The perceptible novelty of the proposed metamaterial is to achieve an average absorptivity of 95.3% for both visible and infrared wavelengths with a maximum absorptivity of 98% from 400 nm to 900 nm. Furthermore, the proposed structure provides polarization insensitivity with a higher oblique incidence angle tolerance up to 45°.
“…The blocking capability of EM waves can be understood by skin depth , where wavelength is proportional to skin depth. So, a higher skin depth is required to block the larger wavelength [ 17 , 51 ]. Figure 7 shows the investigation of absorption property for different back layer thicknesses from h1 = 105 to 65, where the absorption is reduced in the near-infrared region with the decrease of the thickness h1.…”
The visible and infrared wavelengths are the most frequently used electromagnetic (EM) waves in the frequency spectrum; able to penetrate the atmosphere and reach Earth’s surface. These wavelengths have attracted much attention in solar energy harvesting; thermography; and infrared imaging applications for the detection of electrical failures; faults; or thermal leakage hot spots and inspection of tapped live energized components. This paper presents a numerical analysis of a compact cubic cross-shaped four-layer metamaterial absorber (MA) structure by using a simple metal-dielectric-metal-dielectric configuration for wideband visible and infrared applications. The proposed MA achieved above 80% absorption in both visible and near-infrared regions of the spectrum from 350 to 1250 nm wavelength with an overall unit cell size of 0.57λ × 0.57λ × 0.59λ. The SiO2 based anti-reflection coating of sandwiched tungsten facilitates to achieve the wide high absorption bandwidth. The perceptible novelty of the proposed metamaterial is to achieve an average absorptivity of 95.3% for both visible and infrared wavelengths with a maximum absorptivity of 98% from 400 nm to 900 nm. Furthermore, the proposed structure provides polarization insensitivity with a higher oblique incidence angle tolerance up to 45°.
“…This can be explained by the interference theory of Fabry–Perot cavity resonance, which states that the process of increasing the thickness of the silica layer from 1.185 to 1.215 is a deviation from the optimal thickness. Jin et al 42 utilized the anisotropy of a novel two-dimensional van der Waals (vdW) material to achieve ultra-narrowband perfect absorption and single band to multi-band absorption by adjusting the thickness of the intermediate dielectric layer. The structural diagram is shown in Fig.…”
Section: Design Of the Metamaterials Perfect Absorbermentioning
Metamaterial is a kind of artificial material with special properties, showing huge potential for applications in fields such as infrared measurement, solar cells, optical sensors, and optical stealth. Metamaterial Perfect...
“…[14][15][16][17] For example, Jin et al proposed an ultra-narrow single-band absorber using a-MoO 3 material. 18 Tao et al designed a dual-band absorber at terahertz frequencies. 19 Shen et al proposed a triple-band absorber based on a nested gold square-ring structure.…”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.