Chirality is omnipresent in nature and plays vital roles in living organism, and has become a hot research topic across multidisciplinary fields including chemistry, biology, physics, and material science. Meanwhile, polyamides constitute an important class of polymers and have received significant attention owing to their outstanding properties and wide-ranging applications in many areas. Judiciously introducing chirality into polyamides will undoubtedly obtain attractive chiral polymers, namely, optically active polyamides. This review describes the preparation methods of chiral polyamides, including solution polycondensation, interfacial polycondensation, ring-open polymerization, and others; the newly emerging categories of chiral polyamides, i.e., helical polyamides, chiral polyamide-imides, are also presented. The applications of optically active polyamides in chiral research fields including asymmetric catalysis, membrane separation, and enantioselective crystallization are also summarized. In addition, current challenges in chiral polyamides are further presented and future perspectives in the field are proposed.
Preparation of Chiral Polyamides
Solution PolycondensationSolution condensation polymerization is one of the most common methods to prepare chiral polyamides. Yoshikawa and