We have analyzed the magnetic field dependences of intensities of all the optical transitions between magnetic sublevels of hyperfine levels, excited with σ + , π and σ − polarized light, for the D1 and D2 lines of 87 Rb and 85 Rb atoms. Depending on the type of transition and the quantum numbers of involved levels, the Hamiltonian matrices are of 1 × 1, 2 × 2, 3 × 3 or 4 × 4 dimension. As an example, analytical expressions are presented for the case of 2 × 2 dimension matrices for D1 line of both isotopes. Eigenvalues and eigenkets are given, and the expression for the transition intensity as a function of B has been determined. It is found that some π transitions of 87 Rb and 85 Rb get completely canceled for certain, extremely precise, values of B. No cancellation occurs for σ + or σ − transitions of D1 line. For matrices with size over 2 × 2, analytical formulas are heavy, and we have performed numerical calculations. All the B values cancelling σ + , π and σ − transitions of D1 and D2 lines of 87 Rb and 85 Rb are calculated, with an accuracy limited by the precision of the involved physical quantities. We believe our modeling can serve as a tool for determination of standardized values of magnetic field. The experimental implementation feasibility and its possible outcome are addressed. We believe the experimental realization will allow to increase precision of the physical quantities involved, in particular the upper state atomic levels energy.