Catalytic oxidation is used to control carbon monoxide (CO) emissions from industrial exhaust. In this study, a mesoporous silica material, KCC-1, was synthesized and used as a carrier with a high specific surface area to confine active component FeOx nanoparticles (NPs), and the CO catalytic oxidation performance of x%Fe@KCC-1 catalysts (x represents the mass loading of Fe) was studied. The experimental results showed that due to its large specific surface area and abundant mesopores, the FeOx NPs were highly dispersed on the surface of the KCC-1 carrier. The particle size of FeOx was very small, resulting in strong interactions between FeOx NPs and KCC-1, which enhanced the catalytic oxidation reaction on the catalyst. The FeOx loading improved the CO adsorption capability of the catalyst, which facilitated the catalytic oxidation of CO, with the 7%Fe@KCC-1 catalyst achieving 100% CO conversion at 160°C. The CO catalytic removal mechanism was investigated by a combination of in-situ DRIFTS and DFT calculations. This study advances scientific understanding of the application potential of nano-catalysts in important oxidation reactions and provides valuable insights into the development of efficient CO oxidation catalysts.