In recent years, atomic-doping has been proven to significantly improve the electrochemical performance of biomass-derived carbon materials, which is a promising modification strategy. Among them, there are relatively few reports about O-doping. Here, porous carbon derived from orange peel was prepared by simple carbonization and airflow-annealing processes. Under the coordination of microstructure and surface groups, the derived carbon had excellent electrochemical performance for the K-ion batteries' anode, including a high reversible specific capacity of 320.8 mAh/g, high rate performance of 134.6 mAh/g at a current density of 2000 mA/g, and a retention rate of 79.5% even after 2000 long-term cycles, which shows great application potential. The K-ion storage mechanisms in different voltage ranges were discussed by using various characterization techniques, that is, the surface adsorbed of K-ionswas in the high-potential slope area, and the intercalation behavior corresponded to the low-potential quasi-plateau area. In addition, the density functional theory calculations further confirmed that O-doping can reduce the adsorption energy barrier of K-ions, change the charge density distribution, and promote the K-ion storage. In particular, the surface Faraday reaction between the C=O group and K-ions plays an important role in improving the electrochemical properties.