Mixed lead-tin halide perovskites, as highly sensitive materials in the near-infrared region, hold significant potential for optoelectronic device applications. Here, mixed lead-tin halide perovskite saturable absorbers (SAs) have been developed by coupling with the side-polished surfaces of the single-mode fibers and excellent saturable absorption effects of the mixed lead-tin halide perovskite SAs have been demonstrated in the near-infrared region. By constructing the in-gap site assisted carrier transfer mode, the saturation absorption process of the mixed lead-tin halide perovskite SAs can be well explained, in which defects as in-gap sites can help the photon-generated carriers transfer into the conduction band and promote the Pauli-blocking-induced absorption bleaching in the SA. Moreover, ytterbium-doped fiber lasers based on perovskite SAs have been fabricated, and mode-locked operations at 1040 nm are achieved using the mixed lead-tin halide perovskite SA, generating ultra-short pulses with a pulse width of 683 fs, 3dB bandwidth of 4.88 nm, signal-to-noise ratio exceeding 49.74 dB, and a repetition rate of 3.74 MHz. Our findings demonstrate that the mixed lead-tin halide perovskite SAs have excellent optical modulation capability and promising applications in the field of ultrafast photonics.