Development of Aquaporin Z (AqpZ) proteopolymersome has been substantial enough that it can obtain water separation membranes that feature fluxes of 11,000 L m −2 h −1 , a parameter value that is multiple orders of magnitude greater than the conventional industrial membranes available and possible only if the performance of AqpZ proteopolymersome can be properly scaled up. In fact, densely packed 2D AqpZ crystal arrays can in theory reach flux capacity of up to 16,000 L m −2 h −1. On the other hand, these flux values may likely not be reached in practice, since various upscaling issues would prevent them from occurring. Nonetheless, AqpZ offers immense potentials benefits when it comes to biomimetic membranes. The research in membrane development is continuously ongoing, for example, only a few years ago in 2011, aquaporin-based biomimetic polymeric membranes (ABPMs) were viewed as the radically advanced membrane solution and, at the same time, removed from practical applications and commercial production. After 4 years of innovative thinking, ABPM membranes are produced for commercial consumption and with area dimensions of tens of m 2. Although it will take some time before this membrane technology becomes universally accessible, it has already gone beyond the confines of research theory and into practical application. The following chapter will explicitly outline the development of AQP biomimetic membrane technology.