We propose an Omega-K algorithm that uses plane wave approximation for image formation in forward-looking imaging radar (FIRA) with the multi-input/double-output configuration. We assume that each of the transmitting antennas is located at the center of the receiving antenna array by applying a virtual antenna array. Then, we solve numerical equations in an approximation of the plane wave with the direction normal to the antenna array. Finally, we can obtain an image by proceeding with the following steps in order: the matched filtering, Stolt interpolation, two-dimensional inverse fast Fourier transform, phase compensation, image registration, and image merging. The performance of the proposed algorithm is verified through a simulation and a real experiment with neighboring targets. The results show that the proposed Omega-K algorithm with plane wave approximation can be successfully applied to FIRA systems with bistatic synthetic aperture radar configuration.